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Abstract. Operators are derived for the vortex density and the vortex-antivortex pair 
density of s = 4 models on the square and triangular lattices. At T = 0 the finite-lattice 
method estimates of the number of vortices and antivortices per plaquette for the X Y  model 
are 0,025 k0.002 for the square lattice and 0.052rt0.008 for the triangular lattice. 
High-temperature series expansions on the triangular lattice allow the vortex and pair 
densities of the X Y  model to be plotted against inverse temperature. 

1. Introduction 

The classical planar model in two dimensions has received much attention since the 
introduction of topological defects or vortices by Berezinskii (1972) and Kosterlitz and 
Thouless (1973). In their theory isolated vortex and antivortex configurations of spins 
which occur in the high-temperature phase all become bound in pairs as the tempera- 
ture is reduced to T,. In the low-temperature phase of the planar model the density of 
pairs decreases to zero at T = 0. 

Among the many predictions (Kosterlitz 1974) arising from the theory one of the 
most remarkable, the universal finite jump in the superfluid fraction in two-dimensional 
superfluid films (Nelson and Kosterlitz 1977), now seems to be well confirmed (Bishop 
and Reppy 1978, Rudnick 1978, Webster et a1 1979). More direct demonstration of 
vortices and vortex-antivortex pairs is provided by Monte Carlo simulations (Miyashita 
et al 1978, Tobochnik and Chester 1979) of the planar model. 

The goal of the present investigation is to estimate the number of vortices and of 
vortex-antivortex pairs in the s = $ or extreme quantum X Y  model in two dimensions, 
in which the presence of vortices has not previously been investigated. The model is 
determined by the interaction Hamiltonian 

where the sum of the bilinear function of Pauli matrices is over nearest-neighbour pairs 
of sites on a lattice. It is important to perform vortex calculations for the s = XY 
model because the model may be a close approximation to real magnetic systems and to 
superfluid helium films. It is also of great theoretical interest to see to what extent the 
principle of universality, enunciated by Kadanoff (1971) and tested by Betts et a1 (1971) 
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for conventional second-order transitions, is valid for continuous phase transitions in 
the two-dimensional X Y  model. One very significant difference between the quantum 
and classical X Y  models is that vortices or vortex-antivortex pairs can occur even at 
T = 0 for the quantum models as a manifestation of zero-point motion. 

2. Derivation of vorticity operators 

First we define a vorticity operator for s = -$models on the square lattice. As illustrated 
in figure 1 we choose coordinate axes at 45' angles to the crystallographic axes. For one 
sublattice the x axis is the axis of quantisation and for the other sublattice the y axis is 
the axis of quantisation. Each plaquette has 16 possible states specified, for example, 
for a labelled plaquette in figure 1 by {U:, U; ,  a;, uqY}. For a plaquette containing a 
vortex (antivortex) centre the spin direction rotates through an angle +277(-277) for a 
closed walk in a counterclockwise or positive direction around the plaquette and the 
vorticity equals +l(-1); otherwise the vorticity is zero. The configuration illustrated in 
figure 1 contains one vortex and two antivortices. 

1 
X 

Figure 1. A spin configuration of an s = model on a square lattice containing a vortex (V) 
and two antivortices (A). 

The vorticity is invariant under time reversal so that only eight states of a square 
plaquette need be considered. Of these two have vorticity of +1 and -1 and the other 
six have zero vorticity. The vorticity operator with these eigenvalues is 

( 2 )  

For the s = -$ X Y  model (V,) = 0 - the number of vortices and antivortices are equal. 
However, the total density of vortices and antivortices 

v, = (a;u: -U;& + a;ai - ai;a;)/4. 

(v;) = (1 - 2(a;u; + u.;u;a;ai))/4 (3) 

is in general non-zero. If the axes of quantisation of spins on the two sublattices had 
been chosen to be non-orthogonal, the resulting operator V', would have had a 
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non-zero expectation value in those states in which all spins are aligned in the x-y plane. 
Thus it seems that equation (2) is unique. 

The triangular lattice consists of three equivalent sublattices, so it is natural to 
choose three different axes of quantisation, making angles of * 2 ~ / 3  with one another, 
for spins of the three sublattices, as illustrated in figure 2. Now each triangular 
plaquette has only eight possible states. For a triangular plaquette with vertices 
numbered 1, 2 and 3 the state is specified by (rZ, U;, ai}. In figure 2 this particular 
numbered plaquette is in the state (1, 1, 1). As with the square lattice so for the 
triangular lattice, if a plaquette contains a vortex (antivortex) centre the spin direction 
rotates through an angle +2~( -27r )  for a closed walk in a counterclockwise direction. 
The configuration illustrated in figure 2 contains a nearest-neighbour vortex-anti- 
vortex pair, an isolated vortex and an isolated antivortex. Note however that 
‘erect’ plaquettes, half of the total, cannot contain antivortex centres while ‘inverted’ 
plaquettes cannot contain vortex centres. 

/ V  

Figure 2. A spin configuration of an s =i  model on a triangular lattice containing a 
vortex-antivortex pair, an isolated vortex and an isolated antivortex. 

For an erect plaquette as labelled in figure 2 the vorticity operator 

(4) 

This operator has eigenvalue +1 for the illustrated state, (1, 1, 1) and its spin-reversed 
mate. V’, has eigenvalue zero for all other states. The vorticity operator for inverted 
plaquettes has a slightly different form. However when each operator is squared, and 
the expectation value is taken, the resulting expression is the same for all plaquettes. 
Bearing in mind that the triangular lattice has two plaquettes per site we finally arrive at 
the expression for the total number of vortices and antivortices per site, 

V’ -1 T - 4 ( 1 +  fltfly f aTfli + Tifly). 

( V 3  = (2 - 3(a;ai”))/4 ( 5 )  

where i and j are nearest-neighbour sites. In deriving equation (5) we have used the 
relations 

v u  = -(1/2)a” + (J32)flY ( 6 a )  
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and 

(7" = -(1/2)aX -(J5/2)(+Y 

Equation ( 5 )  shows that the number of vortices is a linear function of the energy and 
thus a monotonically increasing function of temperature. 

Having defined a vorticity operator, V(r) ,  for the vorticity of a plaquette centred at 
r, we can consider the vorticity correlation function (V(r )  V(r')). The case of r and 
r' = r + S being nearest-neighbour plaquette centres is particularly interesting. In 
neither the square nor the triangular lattice can neighbouring plaquettes both contain 
vortex centres (or antivortex centres). When one plaquette contains a vortex and the 
nearest neighbour contains an antivortex, V(r )  V(r  + S )  = -1, otherwise it is zero. Thus 
the number per site of nearest-neighbour vortex-antivortex pairs is ( P )  = 
-(4/2)( V(r )  V(r  + 6)) where q is the coordination number of the lattice. Explicitly for a 
pair of adjacent plaquettes on the triangular lattice with sites labelled as in figure 2 

32(PT) = 12-30(&$ + 1 2 ( ~ ; ~ : )  + 3((+~(+;~;(~:)-9((+Z(+~(+;(+i). (7) 

Referring again to figure 1 for labelling on the square lattice 

8(PQ) = 1 -4((T;(T;) f 2(a;g;)  +((+;(+i(+;gg) + 2((+;(+;(+2(+i) 

+ 2(a;(+;a;U;) -4((+;(+;(+:(+g). 

3. Vortices and vortex pairs at T = 0 

To estimate (V') and ( P )  at T = 0 we use the finite lattice method (Betts and Oitmaa 
1977) which consists of computing exactly the quantity of interest on each of a sequence 
of finite lattices which tile the infinite lattice and are of the same rotational symmetry as 
the infinite lattice. The values for finite N are then extrapolated against 1/N to obtain 
the infinite lattice estimate. This method has been applied successfully to estimate the 
spin-spin correlations, ground state energy, RMS magnetisation and other quantities for 
the s = X Y  and Heisenberg antiferromagnetic models in two dimensions (Oitmaa and 
Betts 1978, Oitmaa et a1 1980). 

We have calculated (V;)  in the ground state for finite lattices of N = 8, 10, 16 and 
18 sites and ( V $ )  for N = 7 ,  9, 13 and 19. The results are plotted in figure 3. The 
estimates for (V%)  and especially ( V g )  are quite linear and allow us to estimate for the 
infinite lattice ( V g }  = 0.025 f 0.002 while (V; )  = 0.104f 0.016. Note that there are 
twice as many vortices per plaquette in the triangular lattice as in the square lattice. 

We have also calculated (Po) for N = 8, 10,16 and 18 and (PT)  for only N = 9 and 
13. (In the seven-site cell the meabers  of every pair of sites are nearest neighbours 
while for N = 19 the calculations would be too arduous.) An inspection of the (Po) 
values in figure 3 shows that they have not yet reached linearity. This is not surprising 
because the four spin configurations of (8) cannot be properly accommodated in the 8- 
and 10-spin cells. Thus for both lattices we rely on two-point extrapolations to estimate 
for the infinite lattice (Po) = 0.012 f 0.002 and (PT)  = 0-067 f 0.02. 

Since ( VL)/(PQ} = 2 it appears that on the square lattice almost all vortices and 
antivortices occur in isolated bound pairs. The smaller value of ( V',)/(PT) could be 
explained by the existence of larger clusters of vortices and antivortices on the 
triangular lattice at T = 0. However the number of larger clusters would be difficult to 
estimate precisely by the finite lattice method. 
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Figure 3. Values of (V;) (upright triangles), (Pr) (inverted triangles), ( V L )  (squares) and 
(Po) (circles) for the s = 4 X Y  model on finite lattices of N sites. 

4. Vortices and vortex pairs at high temperature 

At infinite temperature, where all correlations vanish, the number of vortices and 
vortex-antivortex pairs for the s = $models can be read directly from equations (3), (6), 
(7) and (8). It is of interest to compare these numbers with the corresponding 
expectation value for the s = 03 plane rotator. 

Consider a square lattice plaquette, as illustrated in figure 4, at each vertex of which 
is located a unit vector free to point with equal probability in any direction in the plane 
of the square. Define the relative direction of the vector at the ith vertex by the angle, 
Bi, which this vector makes with the vector at vertex 1. Assume 0 S B3 S T. Once vectors 
1 and 3 are fixed, the question is which orientations of vectors 2 and 4 will yield a vortex 

Figure 4. Square plaquette containing a classical unit vector at each vertex. Shaded regions 
illustrate allowed orientations for vectors 2 and 4 so that plaquette contains a vortex. 
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configuration. The acceptable ranges are O3 - IT < e2 < IT and IT < O4 < IT + 03 ,  as illus- 
trated by the hatched areas in figure 4. When the vectors are subject to the above limits 
it is ensured that the configuration corresponds to a vortex in the sense that by choosing 
the smallest angle of turn in stepping a test vector around the square, a net rotation of 
+27r is undergone by the test vector. 

For fixed O1 the probability d P  of having vector 3 lie between O3 and O3 + de3 and 
vectors 2 and 4 lie in the shaded regions is 

21T-e3 e3 de3 
21T 2T 2 7 '  

df'=--- 

The total probability of finding a vortex configuration, given that 0 < O 3  s IT, is 

1 
P = loT d P  = 12. 

(9) 

A similar calculation for IT s O3 < 271. yields an equal contribution. Thus the probability 
of finding a vortex for the planar model on a square at T = CO is &. This is to be compared 
with a probability of i fo r  the s = $model. The probability of finding an antivortex is of 
course equal to the probability of finding a vortex. 

By similar arguments we find that the number of vortices per site on the triangular 
lattice is $ for the planar model as it is also for the s = 5 model. The number of 
nearest-neighbour vortex-antivortex pairs per site in the planar model on the triangular 
lattice is compared with 2 for the spin-half model. On the square lattice the number of 
pairs is f for the planar model compared with for the spin-half model. In short, at 
T = CO the density of vortices and vortex-antivortex pairs is high for both models on 
either lattice with the densities for the classical model somewhat higher. 

(V')  and (P) can be estimated also at finite high temperatures using the high- 
temperature series expansion method for the X Y  model (Rogiers et a1 1 9 7 8 ~ )  which 
has proved very helpful in elucidating the properties of conventional second-order 
transitions (Rogiers et a1 1978b). Inspection of equations (3) and (8) shows that 
high-temperature expansions of both (VG) and (Po) contain only even powers of 
K = J/  k B T  so we consider only the triangular lattice. (V?) is obtained directly from the 
partition function. The second neighbour correlation in equation (7) was available so it 
has been necessary to calculate only the four spin correlations using techniques very 
similar to these previously developed by Rogiers eta1 ( 1 9 7 8 ~ )  to calculate series for the 
fourth-order fluctuation, Y2a ( M : )  - 3(M:)2. 

We obtain for the triangular lattice 

(V:) = $-iK -2K' 32K3 + gK4 + E K 5  - &K6 - 1.289 304 K7 

-0,600 242 K8+2*010  137 K9+3*423  673 KIO 

-0.362 508 K1'-7,324 143 K12+ . . . 
and 

- 1.477 29 K7+0*584  214 K 8 +  . . . . (12) 
In figure 5 are plotted estimates of (V$) and (PT) from Pad6 approximants to 

equations (11) and (12) versus the inverse temperature variable. The scale is linear in 
tanh K in order to permit the T = 0 estimates of the same two quantities to be included. 
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Figure 5. Estimates of ( V ; )  (top curve), the site density of vortices and antivortices, (P,) 
(middle curve), the site density of vortex-antivortex pairs, and nf (bottom curve), the density 
of isolated vortices for the s = f X Y  model on the triangular lattice versus inverse tempera- 
ture, K, on a scale proportional to tanh K. 

The broken parts of the curves are pure guesses. Almost certainly for ( V $ )  and 
probably for (PT) any singularity at T, is very weak. K, has been estimated from the Y2 
series (Rogiers et a1 1978). 

A quantity which presumably vanishes for T < T, is nf, the number of isolated or 
free vortices per site. It is possible to write down an operator which counts the number 
of plaquettes which contain a vortex and for which no nearest-neighbour plaquette 
contains an antivortex. Unfortunately this expression contains several six-spin and 
four-spin correlations. More simply, and correct to order K 2 ,  the number of isolated 
vortices is 

nf = V $ ( 1  -2(PT)/3( VT))3. (13) 
This function also is plotted in figure 4. The maximum at K = 0.25 seems genuine, but 
the curve cannot be extended much beyond this point to reach the critical region. 

5. Summary and outlook 

We have defined for the first time operators whose expectation values yield the nymber 
of vortices and the number of vortex-antivortex pairs on both the square and triangular 
lattices. For each of the operators we have computed exactly the relevant expectation 
values in the ground state of s = : X Y  model on a sequence of finite lattices of N sites. 
Extrapolation against 1/N to the origin leads to estimates of the infinite lattice 
expectation values for each of the operators. It is of considerable interest to note that 
for the s = X Y  model about 21% of the plaquettes on the square lattice contain 
vortices and about 5 %  of the plaquettes on the triangular lattice contain vortices. Of 
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course an equal number of plaquettes contain antivortices. It seems that almost all 
vortices and antivortices are bound in pairs on the square lattice while on the triangular 
lattice larger clusters are probably found as well. 

At infinite temperature we have computed the number of vortices and vortex- 
antivortex pairs on both lattices for the s = 00 planar model. The corresponding 
numbers for the s = i model follow immediately from the definitions. For the 
s = 3 XY model on the triangular lattice we have derived high-temperature series 
expansions of degree 8 for the vortex-antivortex pair function and of degree 12 for the 
number of vortices. All the information we have derived concerning vortices and pairs 
in the s = $ X Y  model on the triangular lattice is displayed in figure 5 .  

This work could be extended in several directions. With a major computational 
effort a significant high-temperature expansion for the proper free-vortex expression 
could be derived and analysed to estimate T, and other critical parameters. High- 
temperature expansions could also be derived for ( VrVr,) when r and r’ are further apart 
than nearest neighbours. Eventually it might be possible to examine the decay nf 
( VrV,,) with distance. High-temperature series for the density of small clusters of 
vortices and antivortices could be derived. At T = 0 equation (13) is inappropriate so n f  
should be calculated exactly on finite lattices and extrapolated to obtain the infinite 
lattice estimate. 

It should be possible to study these topological defects in the planar model via 
high-temperature expansions. A recent Monte Carlo study (Tobochnik and Chester 
1979) resulted in estimates of the vortex density of the planar model only in the vicinity 
of T,. Finally, experimental confirmation of the existence of bound vortex-antivortex 
pairs at T = 0 in two-dimensional planar magnets would be most gratifying. 
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